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ABSTRACT 

Thermal transpiration flows of rarefied gases in annular 
channels are considered, where the driving force for the flow is 
a temperature gradient applied in the channel walls. The 
influence of gas rarefaction, aspect ratio of the annulus, and 
surface accommodation coefficient on mass and heat transfer 
in the process are investigated. For this, the linearized Navier–
Stokes–Fourier (NSF) and regularized 13-moment (R13) 
equations are solved analytically, and a closed-form expression 
for Knudsen boundary layers is obtained. The results are 
compared to available solutions of the Boltzmann equation to 
highlight the advantages of the R13 over the NSF equations in 
describing rarefaction effects in this particular thermally-
driven flow. Through comparisons with kinetic data it is shown 
that R13 equations are valid for moderate Knudsen numbers, 
i.e., Kn < 0.5, where NSF equations fail to describe the flow 
fields properly.  

NOMENCLATURE 

A  model dependent coefficient 
B  model dependent coefficient 
C  integrating constant 
e  heat flow rate [J s-1] 
Fe thermodynamic force for heat transfer [J s-1] 
Fm thermodynamic force for mass transfer [kg s-1] 
I unit tensor 
I0 zeroth-order modified Bessel function of the first 
 kind 

eJ   dimensionless thermodynamic heat fluxes 

mJ  dimensionless thermodynamic mass fluxes 
K0 zeroth-order modified Bessel function of the second 
 kind 
Kn Knudsen number 
L channel length 

 macroscopic length for flow 
L  arbitrary length 
m  mass flow rate [kg s-1] 
m high-order moment tensor [N m-1 s-1] 
p pressure [Pa] 
Pr Prandtl number 
q heat-flux vector 
R high-order moment tensor [N s-2] 
R gas constant [J kg-1 K-1] 
r radial coordinate 
∆r circular gap size [m] 
T temperature [K] 
v velocity vector 
V  slip velocity [m s-1] 
z axial coordinate [m] 

Greek 
α  dimensional axial temperature gradient [J kg-1 m-1] 
δ  rarefaction parameter 
ε  ratio of inner to outer radii 
θ temperature in energy unit [J kg-1] 
κ  thermal conductivity [kg m-1 s-1] 
λ  molecular mean free path [m] 
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μ  viscosity [kg m-1 s-1] 
ρ mass density [kg m-3] 
σ stress deviator [Pa] 
ϕ  azimuthal coordinate [Rad] 
τ dimensionless axial temperature gradient 
χ  accommodation coefficient 

Sub-/super-scripts 
0 reference state 
1 channel inlet 
2 channel outlet 
BGK Bhatnagar−Gross−Krook model 
i inner cylinder 
LB linearized Boltzmann model 
n normal direction with respect to wall 
NSF Navier–Stokes–Fourier 
o outer cylinder 
R13 Regularized 13-moment 
T transposed tensor 
t tangential direction with respect to wall 
w channel wall 
~ dimensionless quantity 

1. INTRODUCTION 

In a rarefied gas confined in a channel or a pipe, when a 
temperature gradient is applied on the walls, a flow is induced 
in the direction of the temperature gradient, i.e., from cold to 
hot [1,2]. This pure thermally induced flow, initiates within a 
thin layer adjacent to the walls. However, as a result of shear 
stress diffusion, the thickness of this layer grows and flow 
eventually fills the width of the channel or pipe, if its length is 
sufficiently large. This phenomenon was first reported by 
Reynolds [3] in 1879 who named it thermal transpiration flow. 
At the same time, Maxwell [4] was trying to provide a 
microscopic description for this problem using kinetic theory of 
gases. Later experimental observations by Knudsen [5,6] 
proved the existence of a pumping effect in thermally-driven 
flows, so-called thermomolecular pressure difference (TPD) [7-
12]. Recently, the possibility of using the pumping effect of 
thermal transpiration to create a microcompressor without 
moving parts (Knudsen compressor) has motivated rigorous 
experimental studies [13-15]. 

In gaseous flows, the measure for gas rarefaction is Knudsen 
number Kn = λ / c, the ratio of the molecular mean free path λ, 
and the geometric characteristic length of the flow c. 
Accordingly, rarefied conditions are common in microsettings 
as well as in low-density (near vacuum) flows. Since in rarefied 
gas flows there are not sufficient collisions between the gas 
particles, an equilibrium state cannot be maintained, and the 
arising nonequilibrium effects alter the transport fields of mass 
and heat. It is evident that for rarefied gas flows the well 

established laws of classical fluid dynamics, i.e., the laws of 
Navier−Stokes and Fourier (NSF), cease to be valid [16]. 
Consequently, nonequilibrium transport processes, including 
thermal transpiration flow, are mostly investigated numerically 
through kinetic models for the Boltzmann equation. 

Thermal transpiration between two parallel plates is a well-
known problem in kinetic theory, for which kinetic solutions 
obtained from Bhatnagar−Gross−Krook (BGK) model are 
reported in [17-21]. For this fundamental problem, more 
realistic kinetic data based on a linearized Boltzmann equation 
(LB) are also available in Refs. [22,23]. For circular channels, 
kinetic simulations of thermal transpiration was initiated by 
Sone and Yamamoto [24] and Loyalka [25] in 1968. Due to 
popularity of tubular flow passages in practical applications, 
their work was extended to study the effects of surface 
accommodation on mass and heat transfer of monatomic and 
polyatomic gases in thermally-induced flows [26-31]. An 
extensive bibliography and careful comparison of kinetic 
solutions for thermal transpiration is available in Ref. [32]. 

While kinetic solutions are very accurate, their complexity 
and computational cost limits their application, particularly in 
the engineering community. As alternatives to kinetic 
approaches, extended macroscopic transport equations which 
are derived from the Boltzmann equation can be used to 
describe rarefied gas flows at lower computational cost than the 
Boltzmann equation itself. This is done by reducing the degrees 
of freedom of the velocity distribution function, which is the 
main variable in the kinetic equation, to the degrees of freedom 
of a finite set of macroscopic variables. The Grad’s moment 
expansion [33,34] and Chapman−Enskog expansion [35] are 
the classical methods to extract hydrodynamic-like equations 
from the Boltzmann equation. 

In the present work, regularized 13-moment (R13) equations 
are used to describe transpiration flow of moderately rarefied 
gases in an annulus between two concentric cylinders. The R13 
system is a regularized version of the classical Grad’s 13-
moment equations [16,36,37], suitable for flow simulation in 
the transition regime, 1≤Kn . In contrast to Grad’s 13-moment 
system, the R13 equations yield continuous shock structures at 
all Mach numbers [38], and correctly predict the formation of 
Knudsen boundary layers in fundamental boundary value 
problems for microflows [12,39-43]. Knudsen boundary layers 
are known as the dominant rarefaction effect in low speed 
rarefied gas flows. 

Annular channels are considered in this study due to their 
specific geometrical property. When aspect ratio of the annulus 
(ratio of the inner cylinder radius to outer cylinder radius) is 
zero the problem represents thermal transpiration in tubes, and 
for annuli with aspect ratios close to unity the problem 
represents thermal transpiration in parallel plate channels (for 
sufficiently large radii). 

In the following, linearized R13 equations are their boundary 
conditions [44] are adopted to describe thermally-induced 
flows in annular flow passages. For the considered problem, 
analytical solutions for linearized R13 and 
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Navier−Stokes−Fourier (NSF) equations are obtained and 
compared to some accurate kinetic data [45]. Through 
comparisons it is shown that due to capability of the R13 
equations in capturing of rarefaction effects, which are missing 
in the NSF solutions, the R13 results match better with kinetic 
data. Our compact analytical solutions, which required modest 
computational effort, reveal that the presence of Knudsen 
boundary layers in the R13 solutions and their contribution to 
velocity slip is the main reason for this improvement. 

2. FORMULATION OF THE PROBLEM 

Monatomic ideal gases are considered with =p ρθ  as the 
equation of state, in which p, ρ, and = RTθ  are pressure, mass 
density, and temperature in energy units (J kg-1) respectively. 
The gas constant is R and T is the absolute temperature. 

The flow configuration is shown in Fig. 1. The gas, confined 
in the annulus between two stationary coaxial cylinders, flows 
axially as a result of temperature variation along the cylindrical 
walls, i.e., thermal transpiration flow. Suggested by the channel 
geometry, it is appropriate to use cylindrical coordinates 

{ , , }ϕ= r zx , as shown in Fig. 1. 
The pressure along the channel is a constant, p0. The 

temperature of the walls at the inlet and outlet of the channel 
are w

1θ  and w
2θ , respectively, with w w

1 2<θ θ . The superscript 
‘w’ refers to the properties at the cylindrical walls. The 
temperature distribution in the walls is w w

1( ) α= +z zθ θ , 
where w w

2 1( ) /α = − Lθ θ  is a positive and constant temperature 
gradient in the axial direction. The inner and outer radii of the 
circular gap are ir  and or , respectively. The aspect ratio of the 
annulus is i o/ε = r r  and the gap size is o iΔ = −r r r . The length 
of the flow passage L, is assumed to be significantly large 
compared to its radial dimension, L rΔ , thus, boundary 
effects at entry and exit can be neglected, and the established 
temperature gradient in the gas and channel walls are the same. 

 
Fig. 1 Cylindrical coordinates and flow configuration in thermal transpiration 
flow between two coaxial cylinders of length L. The flow is driven by a 
constant temperature gradient in the axial direction, applied on both cylinders. 
Wall temperatures at the ends of the channel are w

1θ  and w
2θ , with w w

2 1θ θ> . 
The annular gap size is Δ = −o ir r r , and annulus aspect ratio is /ε = i or r . 

At this configuration a pure thermally-driven flow occurs 
from cold side of the channel to hot side. We investigate 
steady-state flow of the gas in the absence of external force 

(e.g., gravity), driven by a constant and small temperature 
gradient in z-direction. Since the cylinders are not rotating, the 
flow is irrotational, 0v =ϕ , and independent of the azimuthal 
direction, i.e., / 0∂ ∂ =ϕ . 

It must be pointed that due to compressibility effects the 
actual flow in the annulus is two-dimensional in the r-z plane, 
which requires a numerical approach. Nevertheless, it is shown 
through kinetic simulations that for low Mach number flows 
through long capillaries, one can safely use “linear analysis” to 
discard the axial compressibility effects and simplify the 
problem such that a one-dimensional analysis suffices to 
investigate the local distribution of flow properties across the 
channel [12,32,42]. As discussed in Ref. [42], it is 
straightforward to show that a nonzero radial velocity rv  is a 
nonlinear effect due to compressibility effects, thus in our 
linear analysis 0rv =  is considered. 

3. REGULARIZED 13-MOMENT EQUATIONS IN 
LINEAR FORM 

The derivations of regularized 13-moment (R13) equations 
and their corresponding boundary conditions for channel flows 
are discussed in [36,44]. The transformed equations and 
boundary conditions in cylindrical coordinates are presented in 
[12]; details on the transformation are available in Ref. [46]. 

In the present work, in order to obtain closed-form analytical 
solutions, linearized and steady-state equations are considered. 
For linearization, we consider a reference equilibrium state 
defined by p0, w w

0 1 2( ) / 2= +θ θ θ , and 0 0 0/= pρ θ  in which the 
gas is at rest, 0 0=v , and in equilibrium, i.e., 0 0 0= =q σ . The 
vectors v and q correspond to velocity and heat flux, while σ  
is the stress tensor deviator tensor. 

The core equations in the R13 system are the main 
conservation laws for mass, momentum, and energy densities, 
which for the considered problem in steady state and linearized 
form read, 

 0,∇⋅ =v  (1) 
 0,∇⋅ =σ  (2) 
 0.∇⋅ =q  (3) 

In the R13 system, stress deviator tensor σ  and heat-flux 
vector q  are given by their respective moment equations 
[16,36] that again in steady state and linearized form are 

 0
0

0

4 2 ,
5

p
p∇ +∇⋅ = − ∇ −q m v σ

μ
 (4) 

 0
0 0

0

1 5 .
2 2

p
p Prθ σ θ∇ ⋅ + ∇ ⋅ = − ∇ −R q

μ
 (5) 
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Here, 0μ  is the viscosity of the gas at the reference 
(equilibrium) state, and Pr is the Prandtl number. 

Closure for Eqs. (1)–(5) is obtained from regularization 
[16,36], and leads to constitutive relations for higher-order 
moments R  and m , which in linear form read 

 0

0

,
μ
ρ

= − ∇R qA  (6) 

 0

0

.
μ
ρ

= − ∇σm B  (7) 

In the above equations, terms inside angular brackets  
indicate the trace-free part of symmetric tensors. For instance, 
the trace-free part of the symmetric velocity gradient reads 

 ( )( )T1 1 ,
2 3

∇ = ∇ + ∇ − ∇ ⋅v v v v I  (8) 

where the superscript ‘T’ indicates the transposed tensor, and I 
is the unit tensor. For the trace-free part of rank-3 tensors see 
Appendix A in Ref. [16]. 

The Prandtl number in the moment equation for heat flux, 
and the coefficients A  and B  in the constitutive are different in 
BGK kinetic model and linearized Boltzmann Equation model 
[16]. For the BGK kinetic model these coefficients are 

 BGK BGK BGK281, , 3,
5

Pr = = =A B  (9) 

while for the linearized Boltzmann (LB) equation they read 

 LB LB LB2 24, , 2.
3 5

Pr = = =A B  (10) 

In the hydrodynamics limit where the high-order moments 
R  and m  vanish, the terms on the left-hand side of Eqs. (4) 
and (5) are zero, and they reduce to the linearized Navier–
Stokes and Fourier laws of classical hydrodynamics, that is 
Newtonian viscous shear and Fourier’s heat conduction, 

 02 ,= − ∇σ vμ  (11) 
 0 .θ= − ∇q κ  (12) 

with 0 05 / (2 )Pr=κ μ  as the thermal conductivity coefficient 
for ideal gas at the reference state. Equations (11) and (12) 
along with the conservation laws (1)–(3) form the linearized 
Navier–Stokes–Fourier system, 

 2 20, 0, 0.θ∇ ⋅ = ∇ = ∇ =v v  (13) 

4. WALL BOUNDARY CONDITIONS 

For the considered boundary value problem, wall boundary 
conditions are required to relate properties of the gas (adjacent 
to the wall) to the wall temperature and the wall velocity. Since 
R13 equations are derived from the Boltzmann equation, it is 
natural to base the derivation of their boundary conditions on 
the boundary condition for the Boltzmann equation. Detailed 
discussion on derivation of wall boundary conditions for R13 
equations is available in Refs. [44,46], where macroscopic 
boundary conditions for high-order moments are derived from 
Maxwell’s boundary condition for the Boltzmann equation [4]. 

4.1. Boundary Conditions for the Regularized 13-
moment Equations 

The required boundary conditions for R13 system in 
linearized form are [42,44,46,47] 

 0
0

2 1 1 ,
2 5 2

σ
πθ

⎛ ⎞= − − −⎜ ⎟− ⎝ ⎠
tn t t tnnp q mχ

χ
V  (14) 

 0 0 0 0
0

2 11 1 .
2 5 2tn t t tnnR p q mθ θ θ

πθ
⎛ ⎞= − −⎜ ⎟− ⎝ ⎠

χ

χ
V  (15) 

The subscripts ‘t’ and ‘n’ indicate tangential and normal 
directions with respect to the wall, that is the z- and r-
directions, respectively [cf. Fig. 1]. The wall normal points in 
the radial direction toward the gas, thus, wall normal vectors 
have opposite signs on the inner and outer cylinders. Slip 
velocity on the wall is denoted by tV  and 

 w .= −t t tv vV  (16) 

The kinetic between the gas particles and wall surface is 
reflected in the surface accommodation coefficient χ , where 

0=χ  and 1=χ  describe fully reflective (smooth) and fully 
diffusive (rough) walls, respectively. 

As discussed in [42], additional boundary conditions for 
temperature, density, and normal components of heat flux and 
stress are required for the nonlinear R13 equations. Since in the 
present study we consider the linearized problem only, the 
boundary conditions required for the nonlinear setting are not 
shown. 

4.2. Slip Condition for Navier–Stokes–Fourier 
Equations 

Chapman–Enskog expansion of the quantities in boundary 
conditions (14) and (15), allows identifying their high-order 
terms. This general strategy is introduced in [48] to obtain a 
second-order velocity-slip condition for NSF system. In 
Appendix C of Ref. [46] this strategy is extended to derive 
second-order slip condition for curved boundaries. For axial 
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flows in cylindrical coordinates, the slip boundary condition in 
linear form reads [12] 

 

NSF NSF
NSF 0

0 0

NSF NSF
0 0

2
0

2 1
2 5

1 4 1 .
5 15 5 15

πθ σ

θσ σ

−
= − −

⎡ ⎤∂⎛ ⎞ ⎛ ⎞+ + + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

rz z
z r

rz rz

q
n

p p

Pr r Pr r p
B B

χ

χ

μ

V

(17) 

The quantities NSF
rzσ  and NSF

zq  are the Navier–Stokes shear 
stress, Eq. (11), and Fourier’s heat conduction, Eq. (12). The 
first and second terms represent the first-order slip velocity, and 
the rest are second-order corrections. The term NSF /rz rσ  
accounts for curvature effect of the channel wall. The wall 
normal is indicated by rn , with 1rn = +  for the inner wall 
and 1rn = −  for the outer wall. 

5. FLOW EQUATIONS 

Flow equations for thermal transpiration in annular channels 
are obtained by transforming equations (1)–(7) and the NSF 
equations [cf. Eq. (13)] into cylindrical coordinates. Details on 
the transformation are available in Ref. [46]. For the considered 
flow configuration, as discussed in Section 2, the velocity 
vector v , the heat-flux vector q , and stress tensor σ  simplify 
to 

 

( )0
0 , 0 ,
( ) ( )

( ) 0 ( )
0 ( ) 0 ,
( ) 0 ( )

r

z z

rr rz

rz zz

q r

v r q r

r r
r

r r

σ σ
σ

σ σ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= =

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

v q

σ ϕϕ

 (18) 

where all components only depend on the radial coordinate r . 
Since the stress tensor is trace free, we have rr zzσ σ σ= − −ϕϕ , 
that confirms flow is completely independent of ϕ -direction. 

The reference (equilibrium) state properties { }0 0 0, ,ρ θp  and 
an arbitrary length scale  can be used to define dimensionless 
quantities. The radial and axial coordinates are normalized with 
respect to the length scale, 

 , .= =
r zr z  (19) 

The remaining variables in dimensionless form are defined as 

 
0 0 0 0

0 0 00 0 0 0

, , , ,

, , , .

ρ θρ θ
ρ θ θ

θθ θ

= = = =

= = = =

pp
p

p pp p

vv

q σ R mq σ R m

 (20) 

The isothermal speed of sound 0θ  is used to scale the 
velocity. The tilde signs indicate dimensionless quantities. 

Application of differential operators (divergences and 
gradients) in cylindrical geometry [46], and then, introduction 
of the above dimensionless quantities in Eqs. (1)–(7) yield the 
dimensionless form of the linearized R13 equations in 
cylindrical coordinates, 

 1 0,rzr r
σ∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

 (21) 

 1 1 5 ,
2 2rz z

PrR q
r r Kn

τ∂⎛ ⎞+ = − −⎜ ⎟∂⎝ ⎠
 (22) 

 2 1 ,
5

rrz zz rrz z
rz

m mq m v
r r r Kn r

σ
−∂ ∂ ∂

+ + = − −
∂ ∂ ∂

ϕϕ  (23) 

where τ  is the dimensionless temperature gradient along the 
axial direction (a positive quantity for the flow setting in 
Fig. 1), 

 
0

.
z z
θ θτ

θ
∂ ∂

= =
∂ ∂

 (24) 

In the dimensionless equations the reference viscosity μ0 can 
be related to the reference molecular mean free path λ0. 
Accordingly, the Knudsen number appears in the dimensionless 
equations as 

 0 00
0

0

with ,
θ

= =Kn
p

μλ
λ  (25) 

The Knudsen number is the measure for gas rarefaction. 
Equations (21) is the linearized and dimensionless 

momentum balance [Eq. (2)] in axial direction. Equation (22) is 
the axial component of heat-flux balance [Eq. (5)] in linearized 
dimensionless form. Equation (23) is the tangential component 
of shear-stress balance [Eq. (4)]. The dimensionless high-order 
moments in (22) and (23) follow from Eqs. (6) and (7) as 

 1 2, .
2 3

z rz
rz rrz z

q
R Kn m m Kn

r r
σ∂

= − = − =
∂ ϕϕA B  (26) 

Note that in this flow setting rrzm  and zmϕϕ  are curvature 
effects only, and will diminish when →∞r .The required 
boundary conditions for the problem are the same as in (14) 
and (15), that in dimensionless form and with proper 
coordinate-indicative indices read 

 2 1 1 ,
2 5 2rz z z rrz rq m nσ

π
⎛ ⎞= − − −⎜ ⎟− ⎝ ⎠

χ

χ
V  (27) 

 2 11 1 .
2 5 2rz z z rrz rR q m n

π
⎛ ⎞= − −⎜ ⎟− ⎝ ⎠

χ

χ
V  (28) 
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As mentioned in Section 3, in the asymptotic limit of 
0Kn →  the balance equations for stress and heat flux [Eqs. (4) 

and (5)] reduce to Newtonian viscous shear and Fourier’s heat 
conduction, respectively, which in linearized dimensionless 
form in cylindrical coordinates are 

 NSF NSF 5, .
2

z
rz z

v KnKn q
r Pr z

θσ
∂ ∂

= − = −
∂ ∂

 (29) 

Replacement of the above equations in (21)-(23) and setting 
0rz rrz zR m m= = =ϕϕ  gives the NSF equations for this problem, 

i.e., 

 1 0.
∂∂⎛ ⎞+ =⎜ ⎟∂ ∂⎝ ⎠

zv
r r r

 (30) 

Note that Eqs. (22) and (23) are automatically satisfied. 
The required boundary condition for Eq. (30) is the slip 

condition (17) in dimensionless form, 

 

NSF

2
2

2

2 1
2 2

1 4 1 1 .
5 15 5 15

z
z r

z z

v
n Kn

r Pr

v v Kn
Pr Pr r rr

π τ
⎛ ⎞∂−

= +⎜ ⎟⎜ ⎟∂⎝ ⎠

⎡ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞− + + −⎢⎜ ⎟ ⎜ ⎟ ⎥∂∂⎝ ⎠ ⎝ ⎠ ⎦⎣

χ

χ
V

B B
 (31) 

The terms multiplied by 2Kn  are the second-order 
corrections to slip velocity. 

6. RESULTS AND DISCUSSIONS 

6.1. Analytical Solution for Regularized 13-moment 
Equation 

Replacement of (26) into (22) and (23) and subsequent 
integration gives the following analytical solutions for shear 
stress rzσ , axial heat flux zq , and velocity zv , 

 1 ,rz r
σ =

C
 (32) 

 2 0 3 0
2 2 5 ,

2z
Pr Pr Knq I r K r

Kn Kn Pr
τ

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
C C

A A
 (33) 

 

( )1
4

2 0 3 0

ln

2 2 2 .
5

τ= + −

⎡ ⎤⎛ ⎞ ⎛ ⎞
− +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

z
Knv r
Pr Kn

Pr PrI r K r
Kn Kn

C
C

C C
A A

 (34) 

The underlined terms indicate the solution of the NSF 
equations. In the above general solutions 1C  to 4C  are the 
integrating constants, that must be determined from the 
boundary conditions on both inner and outer walls. For the 
NSF solution the constants 1C  and 4C  can be obtained from 
the slip condition (31). For the R13 solution the required 

boundary conditions are (27) and (28). The expressions for 
constants 1C  to 4C  are too bulky, hence are not shown here. 
These constants can be computed using analytical software 
packages such as Mathematica® or Maple®. It is important to 
mention that all constants linearly depend on the axial 
temperature gradient τ . 

As given in (32), both R13 and NSF systems yield identical 
solution for shear stress. Equation (33) confirms that NSF 
yields heat flow only in presence of a temperature gradient, 
while the full R13 solution includes other terms that describe 
rarefaction effects, i.e., a heat flux which is not driven by 
temperature gradient. The zeroth-order modified Bessel 
functions 0I  and 0K  represent the Knudsen boundary layers. 
The R13 velocity solution shows that Knudsen layers 
contribute in the flow velocity. This effect is missing in the 
NSF velocity solution. 

For 1=χ , 0.1ε = , and {0.05,0.15,0.3}Kn =  the solutions 
(32)–(34) are plotted in Fig. 2, which are normalized with 
respect to the temperature gradient. The results are obtained for 
both BGK and LB coefficients, as given in Eqs. (9) and (10). 
The slip conditions for NSF yields 1 0=C . Accordingly, 

NSF 0rzσ =  and the second-order slip condition reduces to 

 NSF 1 .
2

τ=z
Kn
Pr

V  (35) 

Due to this simplification, the effects of accommodation 
coefficients and second-order slip terms cannot be captured for 
NSF equations in linear analysis. 

Fig. 2 (a) shows shear stress distribution in the annular gap 
between i / / (1 )ε εΔ = −r r  and o / 1/ (1 )εΔ = −r r . In contrast 
to the NSF, the constant 1C  does not vanish in the R13 solution 
and the predicted shear stress is non-zero. However, in the 
hydrodynamic limit when 0Kn →  the R13 shear stress 
converges to that of NSF. As the Knudsen number increases, 
the solutions with LB coefficients yield higher shear stress on 
the inner wall, compared to BGK coefficients. Unfortunately, 
kinetic data (solutions of the Boltzmann equation) for shear 
stress is not reported in the literature to perform a comparison, 
and evaluate the accuracy of our results. 

Fig. 2 (b) shows the heat flux distribution across the channel. 
As given in Eq. (33), NSF predicts a uniform heat flow in the 
opposite direction of the temperature gradient, postulated by 
Fourier’s law. For 0.05Kn =  the R13 solution differs to the 
NSF only on the narrow region close to the boundaries, which 
is the effect of Knudsen boundary layers, i.e., the terms with 
Bessel functions. As the Knudsen number increases the 
thickness of Knudsen layers increases; for {0.15,0.3}Kn =  the 
Knudsen layers affect the whole cross section. The heat flow in 
Knudsen layers competes with Fourier heat flow, i.e., it occurs 
in the direction of temperature gradient. The magnitude of heat 
flow predicted by LB model is considerably larger than BGK 
model, mainly due to the difference in Prandtl numbers. Kinetic 
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data for the isothermal heat flux are not available for 
comparison. The validity of our heat-flux solutions are 
discussed in the next section, where the thermal energy flow 
rate is evaluated from NSF and R13 solutions and compared to 
kinetic data. 

 
Fig. 2: Normalized distribution of shear stress, heat flux, and velocity across the 
annulus are plotted. The plots are obtained for coefficients for χ = 1 and 

0.1ε = , with both BGK and LB coefficients. Solutions for NSF and R13 are 
compared for {0.05,0.15,0.3}Kn = . 

Fig. 2 (c) shows the velocity profiles. Similar to heat flux, 
velocity distribution is uniform in the NSF solution. The term 

1 ln( ) /r KnC  in (34) which represent asymmetric velocity 
distribution due to curvature, vanished in the NSF solution 
because 1 0=C . The validity of the R13 velocity solution and 
the effects of Knudsen layers contribution are discussed in the 
next section, where the mass flow rate is evaluated from NSF 
and R13 solutions and compared to kinetic data. 

To show the influence of the annulus aspect ratio and surface 
accommodation coefficient in the process, solutions for 

0.15Kn = , {0.2,0.9}ε = , and χ = {0.6,0.8,1} are plotted in 
Fig. 3. For the plots the LB coefficients in Eq. (10) are 
employed. For 0.2ε = , i.e., left plots in Fig. 3, the curvature 
difference between the inner and outer walls is significant, and 
R13 profiles are asymmetric with respect to the centerline of 
the annulus. For larger values of ε , when the size of the gap 
decreases and surface curvatures become close, the curvature 
difference effects vanished and solutions converge to the planar 
geometry results [42]. As shown in the right-hand side plots, 
for 0.9ε =  the stress distribution converges to linear 
distribution (with very small magnitudes), and heat flux and 
velocity distributions are almost symmetric. Fully dissuasive 
wall with χ = 1 exhibit more friction, hence, at the walls, stress 
increases with χ, but heat flux and velocity decrease. 

 
Fig. 3: Normalized distributions of shear stress, heat flux, and velocity across 
the annulus are compared between NSF and R13. The plots are obtained for 

0.15Kn = , {0.6,0.8,1}χ = , and {0.2,0.9}ε = , with LB coefficients. 
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6.2. Mass and Thermal Energy Flow Rates: 
Comparison with Kinetic Data 

Following the work of Lo et al. [45], flow rates for mass m  
(kg s-1) and heat e  (J s-1) in transpiration flow can be expressed 
by phenomenological laws (for the linear case) 

 ,m m e em F J e F J= =  (36) 

where mF  and eF  are the thermodynamic force for mass and 

heat transfer, respectively, and mJ  and eJ  are the 
corresponding dimensionless thermodynamic fluxes of mass 
and heat. The thermodynamic forces, which include the 
temperature gradient, are [45] 

 3 30 0

0 0

2 2 , 2 2
ρ θ θπ π
θ θ

∂ ∂
= − = −

∂ ∂m e
p

F F
z z

L L  (37) 

where L  is an arbitrary length. The dimensionless fluxes read 

 
o o

i i

d , d ,
r r

m z e zr r
J v r r J q r r= =∫ ∫  (38) 

For the sake of consistency with Ref. [45], we set o o/= r rL  
in Eq. (37) and o= r  in Eq. (24). After straightforward 
manipulation dimensionless mass and heat flow rates can be 
obtained from Eq. (36) as, 

 
o

i
32

oo 0 0

2 4 d
2

r

zr

mm v r r
rrπ ρ θ τ

=− = ∫  (39) 

 
o

i
32

oo 0 0

2 4 d
2

r

zr

ee q r r
rr pπ θ τ

=− = ∫  (40) 

In the kinetic simulations [45], a rarefaction parameter δ  is 
defined, that is related to our definition of Knudsen number [cf. 
Eq. (25)] via = 1/ ( 2 )δ Kn . 

In Fig. 4, variations of dimensionless mass flow rate m  and 
heat flow rate e , with respect to Knudsen number are plotted 
for χ = 1 and {0.175,0.523,0.872}ε = . NSF and R13 results 
are compared to kinetic data from linearized Boltzmann (LB) 
model [45], shown by symbols. As expected, both mass and 
heat flow rates increase when the diameter of the inner cylinder 
decreases, since larger values for ε  correspond to narrower 
annuli. The solution for a cylindrical tube [12] can be obtained 
for 0ε →  (not shown here). As depicted, R13 accurately 
predicts mass and heat flow rate for 0.5≤Kn , whereas NSF 
fails to follow the kinetic data for mass flow rate. NSF results 
are acceptable only for heat flow rate at small Knudsen 
numbers, i.e., 0.07<Kn . At 0.5=Kn  the error of R13 results 

with respect to kinetic data, evaluated from 
error = (data − model) / model, is about 7% for mass flow rate, 
and 11% for heat flow rate. 

 
Fig 4: Variations of dimensionless mass flow rate m  and heat flow rate e  with 
respect to Knudsen number are shown for χ = 1 and {0.175,0.523,0.872}ε = . 
R13 and Navier−Stokes−Fourier (NSF) results are compared to kinetic data 
(symbols) of linearized Boltzmann model [45]. 

As suggested by the analytical solutions (32)-(34), presence 
of Knudsen boundary layers in the R13 solutions, beside its 
accurate boundary conditions are the main reasons for priority 
of R13 over NSF system. 

More comparison is performed in Fig. 5, where mass and 
heat flow rates from both BGK and LB kinetic models [45] are 
compared to our macroscopic results for a narrow and a wide 
annuli, {0.175,0.872}ε = , with χ = 1. In the transition regime 
where 1<Kn , our results agree with the trend in kinetic data. 
Compared to BGK model, LB model yields higher values for 
m  and e , because velocity and heat flux have larger 
magnitudes in the LB predictions, see Fig. 2. 

 
Fig. 5: Variations of dimensionless mass flow rate m  and heat flow rate e  
with respect to Knudsen number are shown for χ = 1 and {0.175,0.872}ε = . 
R13 and Navier−Stokes−Fourier (NSF) results are compared to kinetic data of 
linearized Boltzmann model (diamonds) and BGK model (circles) from Ref. 
[45]. 

7. CONCLUSION 
A compact analytical model based on the regularized 13-
moment (R13) equations was employed to describe thermal 
transpiration flow of rarefied gases in tubes with annular cross 
section. Thermally-driven flows, forced by small temperature 
gradients were investigated with linearized equations, where 
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their solutions linearly depend on the temperature gradient. The 
effects of gas rarefaction, annulus geometry, and surface 
accommodation on the solutions of shear stress, heat flux, and 
velocity were examined. 

Comparison of R13 solutions with kinetic data revealed that 
the dominant rarefaction effects in the considered flow are, 
(i) formation of Knudsen boundary layers, and (ii) slip velocity 
on the walls. The effects of these nonequilibrium phenomena 
on mass and heat flow rates are thoroughly demonstrated, and 
compared to high-quality Boltzmann simulations. Our 
comparisons confirm that the R13 system successfully 
approximates kinetic solutions for 0.5<Kn . 

By comparing Navier–Stokes–Fourier (NSF) and R13 
solutions, it is evident that Knudsen layers and their 
contribution on velocity slip are absent in the NSF theory; this 
is where the real advantage of R13 stands out. We highlighted 
the consequence of these shortcomings in NSF equations by 
computing mass and heat flow rates, and showed that NSF are 
valid in the slip flow regime. 

To conclude, we point to the insufficiency of R13 equations 
for the description of highly rarefied flows 1Kn , in which 
the magnitude of rarefaction effects is beyond the resolution of 
R13 equations. In such conditions, larger systems of moment 
equations [49] are suggested. 

ACKNOWLEDGEMENT 
The authors thank the financial support of the Natural Sciences 
and Engineering Research Council of Canada (NSERC). 

REFERENCES 
[1] Sone Y., 2000, “Flows induced by temperature fields in 

a rarefied gas and their ghost effect on the behavior of a 
gas in the continuum limit,” Annu. Rev. Fluid Mech., 
32, p. 779. 

[2] Sone Y., 2002, Kinetic theory and fluid dynamics, 
Birkhäuser, Boston. 

[3] Reynolds O., 1879, “Experimental researches on 
thermal transpiration of gases through porous plates 
and on the law of transpiration and impulsion,” Phil. 
Trans. Roy. Soc. Lon., 170, p. 727. 

[4] Maxwell C., 1879, “On stress in rarefied gases arising 
from inequalities of temperature,” Phil. Trans. Roy. 
Soc. Lon., 170, p. 231. 

[5] Knudsen M., 1910, “Eine Revision der 
Gleichgewichtsbedingung der Gase. Thermische 
Molekularströmung,” Ann. Phys., 31, p. 205. 

[6] Knudsen M., 1910, “Thermischer Molekulardruck der 
Gase in Röhren,” Ann. Phys., 33, p. 1435. 

[7] Liang S. C., 1951, “Some Measurements of Thermal 
Transpiration,” Journal of Applied Physics, 22(2), p. 
148. 

[8] Takaishi T., and Sensui Y., 1963, “Thermal 
transpiration effect of hydrogen, rare gases and 
methane,” Trans. Faraday Soc., 59, p. 2503. 

[9] Edmonds T., and Hobson J. P., 1965, “A Study of 
Thermal Transpiration Using Ultrahigh-Vacuum 
Techniques,” J. Vac. Sci. Technol. A, 2, p. 182. 

[10] Watkins R. A., Taylor W. L., and Haubach W. J., 1967, 
“Thermomolecular Pressure Difference Measurements 
for Precision Helium - 3 and Helium - 4 Vapor-
Pressure Thermometry,” The Journal of Chemical 
Physics, 46, p. 1007. 

[11] Porodnov B. T., Kulev A. N., and Tukhvetov F. T., 
1978, “Thermal transpiration in a circular capillary 
with a small temperature difference,” J. Fluid Mech., 
88, p. 609. 

[12] Taheri P., and Struchtrup H., 2010, “An extended 
macroscopic transport model for rarefied gas flows in 
long capillaries with circular cross section,” Physics of 
Fluids, 22, p. 112004. 

[13] Vargo S. E., Muntz E. P., Shiflett G. R., and Tang W. 
C., 1999, “Knudsen compressor as a micro- and 
macroscale vacuum pump without moving parts or 
fluids,” Papers from the 45th National Symposium of 
the American Vacuum Society, AVS, p. 2308. 

[14] Han Y.-L., Muntz E. P., Alexeenko A., and Young M., 
2007, “Experimental and computational studies of 
temperature gradient-driven molecular transport in gas 
flows through nano/microscale channels,” Nano. 
Microscale Thermophys. Eng., 11, p. 151. 

[15] York D. C., Chambers A., Chew A. D., and Troup A. 
P., 1999, “Measurement of thermal transpiration across 
an array of parallel capillaries using a differential 
capacitance manometer,” Vacuum, 55, p. 133. 

[16] Struchtrup H., 2005, Macroscopic transport equations 
for rarefied gas flows: Approximation methods in 
kinetic theory, Springer, New York. 

[17] Loyalka S. K., 1971, “Kinetic theory of thermal 
transpiration and mechanocaloric effect. I,” J. Chem. 
Phys., 55, p. 4497. 

[18] Loyalka S. K., 1974, “Comments on Poiseuille flow 
and thermal creep of a rarefied gas between parallel 
plates,” Phys. Fluids, 17, p. 1053. 



 10 Copyright © 2012 by ASME 

[19] Loyalka S. K., 1975, “Kinetic theory of thermal 
transpiration and mechanocaloric effect. II,” J. Chem. 
Phys., 63, p. 4054. 

[20] Loyalka S. K., Petrellis N., and Storvick T. S., 1979, 
“Some exact numerical results for the BGK model: 
Couette, Poiseuille and thermal creep flow between 
parallel plates,” J. Appl. Math. Phys. (ZAMP), 30, 
p. 514. 

[21] Barichello L. B., Camargo M., Rodrigues P., and 
Siewert C. E., 2001, “Unified solutions to classical 
flow problems based on the BGK model,” J. Appl. 
Math. Phys. (ZAMP), 52, p. 517. 

[22] Ohwada T., Sone Y., and Aoki K., 1989, “Numerical 
analysis of the Poiseuille and thermal transpiration 
flows between two parallel plates on the basis of the 
Boltzmann equation for hard-sphere molecules,” Phys. 
Fluids A, 1, p. 2042. 

[23] Loyalka S. K., and Hickey K. A., 1991, “Kinetic theory 
of thermal transpiration and the mechanocaloric effect: 
Planar flow of a rigid sphere gas with arbitrary 
accommodation at the surface,” J. Vac. Sci. Technol. 
A, 9, p. 158. 

[24] Sone Y., and Yamamoto K., 1968, “Flow of rarefied 
gas through a circular pipe,” Phys. Fluids, 11, p. 1672. 

[25] Loyalka S. K., 1969, “Thermal transpiration in a 
cylindrical tube,” Phys. Fluids, 12, p. 2301. 

[26] Porodnov B. T., and Tukhvetov F. T., 1979, 
“Theoretical investigation of nonisothermal flow of a 
rarefied gas in a cylindrical capillary,” J. Eng. Phys. 
Thermophys., 36, p. 61. 

[27] Lo S. S., Loyalka S. K., and Storvick T. S., 1984, 
“Kinetic theory of thermal transpiration and 
mechanocaloric effect. V. Flow of polyatomic gases in 
a cylindrical tube with arbitrary accommodation at the 
surface,” J. Chem. Phys., 81, p. 2439. 

[28] Valougeorgis D., and Thomas J. R., 1986, “Exact 
numerical results for Poiseuille and thermal creep flow 
in a cylindrical tube,” Phys. Fluids, 29, p. 423. 

[29] Sharipov F., 1996, “Rarefied gas flow through a long 
tube at any temperature ratio,” J. Vac. Sci. Technol. A, 
14, p. 2627. 

[30] Siewert C. E., 2000, “Poiseuille and thermal-creep flow 
in a cylindrical tube,” J. Compu. Phys., 160, p. 470. 

[31] Sharipov F., 2003, “Application of the Cercignani-
Lampis scattering kernel to calculations of rarefied gas 
flows. III. Poiseuille flow and thermal creep through a 
long tube,” Eurp. J. Mech. B/Fluids, 22, p. 145. 

[32] Sharipov F., and Seleznev V., 1998, “Data on internal 
rarefied gas flows,” J. Phys. Chem. Ref. Data, 27, 
p. 657. 

[33] Grad H., 1949, “On the kinetic theory of rarefied 
gases,” Comm. Pure Appl. Math., 2, p. 325. 

[34] Grad H., 1958, “Principles of the kinetic theory of 
gases,” in Handbuck der Phys., Vol. 12, S. Flugge, ed., 
Springer, Berlin. 

[35] Chapman S., and Cowling T. G., 1970, The 
mathematical theory of nonuniform gases, Cambridge 
University Press, Cambridge. 

[36] Struchtrup H., and Torrilhon M., 2003, “Regularization 
of Grad’s 13-moment equations: Derivation and linear 
analysis,” Phys. Fluids, 15, p. 2668. 

[37] Struchtrup H., 2004, “Stable transport equations for 
rarefied gases at high orders in the Knudsen number,” 
Phys. Fluids, 16, p. 3921. 

[38] Torrilhon M., and Struchtrup H., 2004, “Regularized 
13-moment equations: Shock structure calculations and 
comparison to Burnett models,” J. Fluid Mech., 513, 
p. 171. 

[39] Taheri P., Torrilhon M., and Struchtrup H., 2009, 
“Couette and Poiseuille microflows: Analytical 
solutions for regularized 13-moment equations,” Phys. 
Fluids, 21, p. 17102. 

[40] Taheri P., Rana A. S., Torrilhon M., and Struchtrup H., 
2009, “Macroscopic description of steady and unsteady 
rarefaction effects in boundary value problems of gas 
dynamics,” Cont. Mech. Thermodyn., 21, p. 423. 

[41] Taheri P., and Struchtrup H., 2009, “Effects of 
rarefaction in microflows between coaxial cylinders,” 
Phys. Rev. E, 80, p. 66317. 

[42] Taheri P., and Struchtrup H., 2010, “Rarefaction effects 
in thermally-driven microflows,” Physica A, 389, p. 
3069. 

[43] Taheri P., and Struchtrup H., 2012, “Poiseuille flow of 
moderately rarefied gases in annular channels,” Int. J. 
Heat Mass Transf., 55, p. 1291. 



 11 Copyright © 2012 by ASME 

[44] Torrilhon M., and Struchtrup H., 2008, “Boundary 
conditions for regularized 13-moment equations for 
micro-channel flows,” J. Comp. Phys., 227, p. 1982. 

[45] Lo S. S., Loyalka S. K., and Storvick T. S., 1983, 
“Rarefied gas flow in a cylindrical annulus,” J. Vac. 
Sci. Technol. A, 1, p. 1539. 

[46] Taheri P., 2010, “Macroscopic description of rarefied 
gas flow in the transition regime,” PhD Thesis, 
University of Victoria. 

[47] Torrilhon M., 2010, “Slow gas microflow past a 
sphere: Analytical solution based on moment 
equations,” Physics of Fluids, 22, p. 72001. 

[48] Struchtrup H., and Torrilhon M., 2008, “Higher-order 
effects in rarefied channel flows,” Phys. Rev. E, 78, 
p. 46301. 

[49] Gu X., and Emerson D. R., 2009, “A high-order 
moment approach for capturing non-equilibrium 
phenomena in the transition regime,” J. Fluid Mech., 
636, p. 177.  

 



 12 Copyright © 2012 by ASME 

 


